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Abstract

A single-player game of MEMORY is played with n distinct pairs of cards, with the cards in each pair
bearing identical pictures. The cards are laid face-down. A move consists of revealing two cards, chosen
adaptively. If these cards match, i.e., they bear the same picture, they are removed from play; otherwise,
they are turned back to face down. The object of the game is to clear all cards while minimizing the
number of moves. Past works have thoroughly studied the expected number of moves required, assuming
optimal play by a player has that has perfect memory. In this work, we study the MEMORY game in a
space-bounded setting.

We prove two time-space tradeoff lower bounds on algorithms (strategies for the player) that clear
all cards in T moves while using at most S bits of memory. First, in a simple model where the pictures
on the cards may only be compared for equality, we prove that ST = Ω(n2 logn). This is tight: it is easy
to achieve ST = O(n2 logn) essentially everywhere on this tradeoff curve. Second, in a more general
model that allows arbitrary computations, we prove that ST 2 = Ω(n3). We prove this latter tradeoff by
modeling strategies as branching programs and extending a classic counting argument of Borodin and
Cook with a novel probabilistic argument. We conjecture that the stronger tradeoff ST = Ω̃(n2) in fact
holds even in this general model.
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1 Background

1.1 Finite Function Complexity

While algorithms give upper bounds on the computational resources needed to solve problems, complexity
theory seeks to prove that some problems cannot be solved efficiently by any algorithm. Two most important
computation resources are time and space. Time is usually defined as the numbers of steps an algorithm
takes, and space defined as the number of bits required to compute the output for a given input. Specific
problems’ time and space complexities depend on the computational model. The choice of computational
model restricts the class of potential algorithms. When we analyze the runtime and space usage of well-
known algorithms such as depth-first search or Dijkstra’s shortest-path algorithm, the computational model
is usually implicitly the Random-Access Machine (RAM). Both RAM and the Turing machine are uniform
computation models, meaning that the same machine is used for inputs of all sizes. Since algorithms can
use unexpected strategies, it is usually hard to prove lower bounds on the computational resources required
to solve specific problems in the most general computation models. One way to make progress on the lower
bounds is to limit the computation model in order to limit the class of potential algorithms. The hope is that
the lower bounds obtained in restricted models will eventually be generalized to more powerful models.

We now introduce four restricted computational models, for which complexity theorists have proven
lower bounds on computing finite functions: Boolean circuits, formulas, decision trees and branching pro-
grams. Let n be a finite positive integer, and X , Y be finite sets. A finite function is a partial function
f : X ′→ Y defined on only finitely many n-tuples X ′ ⊆ Xn. A Boolean function f : {0,1}n→ {0,1} is an
example of finite function. See Boppana and Sipser’s survey [BS90] on the complexity of Boolean functions
for Boolean circuits, formulas, and branching programs. Unlike RAM and the Turing machine, these models
are nonuniform, meaning that a different algorithm can be used for each input size n.

A Boolean circuit is a simplified model of the chips used to make modern computers. It is directed
acyclic graph. The input nodes have indegree 0 and are labeled with a variable xi or with a constant 0 or
1. The nodes with indegree k > 0 are called gates and are labeled with a Boolean function on its k inputs.
The collection of Boolean functions used as gates is called a basis. For example, the DeMorgan basis
D = {NOT (¬),AND(∨),OR(∧)}. One node is the output node. The size of the circuit is the number of
gates, and the depth is the maximum distance from an input to the output. Figure 1 is a Boolean circuit that
computes XOR on two inputs x1,x2.

For a Boolean function f , the size of the smallest circuit computing f is called its circuit complexity,
C( f ). There has been little progress on general circuit lower bounds: No super-linear circuit lower bound
have been proven for any NP problem. Some progress is made for restricted circuit classes, such as bounded

Figure 1: Boolean circuit of XOR
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depth circuits, bounded depth circuits with special gates, and monotone circuits. Usually there is a notion of
“progress” of the computation, and analysis shows that small circuits cannot achieve the amount of progress
required to compute the output from the inputs. See Chapter 14 in Arora and Barak’s textbook [AB09] for
a survey of results in circuit complexity.

A Boolean formula is a special kind of Boolean circuit whose underlying graph is a tree (all gates have
outdegree at most 1). Figure 2 is a formula that computes XOR. We can unfold this tree into a Boolean
expression consisting of literals (variables or their negations) and Boolean functions: ((¬x1)∧ x2)∨ (x1 ∧
(¬x2)). The size of a formula is the number of occurrences of literals in the formula, and the size of the
smallest formula that computes f is denoted as the formula complexity L( f ). See Section 5 in [BS90] for a
survey on lower bounds for formulas with different bases.

A decision tree of a Boolean function f is a binary tree whose internal vertices are labeled by variables
and leaves are labeled by 0 and 1. Each internal vertex has exactly two outgoing edges, labeled by 0 and 1.
Given an assignment to the input variables, the function value is computed by following a path starting at
the root, querying the variable designated by the label of the current vertex, following the edge labeled with
the variable’s value, and going to the next vertex, until we reach a leaf. The output is the label of the leaf
vertex. The decision tree complexity of f , D( f ), is the minimum depth of decision trees computing f . See
Chapter 5 in [DK00] for a survey on the decision tree complexity of various Boolean functions.

The definition of decision tree for Boolean functions can be extended to any finite function f : [X ]n→Y .
Each node queries a variable xi and branches into |X | = R subtrees, one for each possible value of xi. See
figure 3 for an example. Besides general decision trees whose nodes directly query variable values, compar-
ison trees, linear decision trees and algebraic computation trees have also been studied. In a comparison
tree, each node compares two variables xi : x j and branches into three subtrees corresponding to the three
cases xi < x j, xi = x j, and xi > x j. See figure 4. One example of comparison tree lower bound is that sorting
n variables requires decision trees of height Ω(n logn). In a linear comparison tree, each node v queries
∑

n
i=1 λ v

i xi : cv and branches into three subtrees ∑
n
i=1 λ v

i xi < cv, ∑
n
i=1 λ v

i xi = cv, ∑
n
i=1 λ v

i xi > cv, where λ v
i

and cv are arbitrary real numbers. See figure 5. An algebraic computation tree has some nodes performing
algebraic operations (multiplying two ancestors, multiplying one ancestor with a constant, or taking square
root of an ancestor) and other nodes performing comparison queries (whether an ancestor is greater than 0).
Ben-Or shows that any algebraic computation tree that decides whether n inputs variables are distinct has
height Ω(n logn) [BO83]. The output of decision trees can be single- or multi-valued (such as in sorting),
and can be attached to either only the leaf nodes or any edge. In the latter case outputs are collected over the
entire computation path from the root to the leaf.

Identical subtrees in a decision tree can be combined. Therefore, We can use a directed acyclic graph
instead of a tree to represent a decision process. Such a “decision graph” is called a branching program,

Figure 2: Boolean formula of XOR
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Figure 3: Example of a decision tree

Figure 4: Example of a comparison tree (or a comparison branching program)

Figure 5: Example of a linear comparison tree (or a linear comparison branching program)
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which is the primary model we study. We will introduce the model in detail in section 3.1. The two important
complexity measures of a branching program are depth and width. The depth corresponds to the running
time of an algorithm and the width corresponds to the space. The branching program is thus a natural model
to simultaneously study time and space complexities.

1.2 Concentration of Measure

If we toss a fair coin 1000 times, the number of heads is very likely to be around 500. Although there are
many possible outcomes, those that are likely to be observed is usually concentrated in a narrow range. This
phenomenon is called concentration of measure. There are many techniques to bound the probability that
random variable X takes values that deviate far from its expected value EX . The simplest tail bound is
Markov’s inequality: For X > 0 and a > 0,

Pr [X > a]6
EX
a

.

This bound is quite loose. For example, let X be the number on top when we throw a fair die. Clearly
EX = 3.5. Markov’s inequality would give us Pr [X > 7]6 3.5/7 = 1/2, while this probability is actually 0.

A tighter bound is Chebyshev’s inequality:

Pr [|X−EX |> a]6
Var(X)

a2

where a> 0 and Var(X) is the variance of X . In the example of throwing a fair die, Var(X)=∑
6
i=1 (i−3.5)2/6=

35/12. Chebyshev’s inequality gives us Pr [|X−3.5|> 3.5]6 35/(12∗3.5), or Pr [X > 7]6 5/12.
We will use the Chernoff-Hoeffding bound in our proof. Let Z be the total number of heads when we

toss a biased coin n times. Let p be the probability of head in each toss. Then Z is a binomially distributed
random variable and can be written as a sum Z = ∑i∈[n] Xi, where Xi (i ∈ [n]) is the indicator random variable
defined by Xi = 1 if the ith toss is head and Xi = 0 otherwise. The Chernoff-Hoeffding bound states that, for
all reals a, p, with 0 < p < a < 1,

Pr[Z > an]6 e−nD(a‖p) , (1)

where D(a‖p) = a ln
a
p
+(1−a) ln

1−a
1− p

(2)

is the relative entropy of the Bernoulli distribution Bern(a) to Bern(p) (Theorem 1 of Arratia and Gor-
don [AG89]).

One requirement for applying the Chernoff-Hoefding bound is that {Xi : i ∈ [n]} have to be independent.
However, in some dependent situations, the bound can be applicable as is or with some modifications. One
circumstance where the bound is salvageable is when {Xi : i ∈ [n]} are negatively associated. Random
variables are negative associated if for all disjoint subsets I,J ⊆ [n] and all non-decreasing functions f and
g,

E f (Xi, i ∈ I)g(X j, j ∈ J)6 E f (Xi, i ∈ I)Eg(X j, j ∈ J)

(Definition 3.1 in [DP09]). Intuitively, conditioned on a subset of indicator random variables taking high
values, a disjoint subset take low values.

When {Xi : i ∈ [n]} are negatively associated, Chernoff-Hoeffding bounds can be applied as is to Z =

∑i∈[n] Xi. See Chapter 3 in Dubhashi and Panconesi’s textbook [DP09] for more on applying Chernoff-
Hoeffding bounds in dependent settings.
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2 Introduction

The popular children’s card game “Memory” (also known as “Concentration”) is played with a deck of n
pairs of picture cards: the two cards in each pair have the same picture, while two cards taken from two
distinct pairs have distinct pictures. The game starts with these cards facing down on a table. A move in the
game consists of flipping up one card to reveal it, and then flipping up a second card: if the two revealed
cards are from the same pair—i.e., they match—they are removed from the table, otherwise they are flipped
back to face down. The game ends when all cards have been removed. From these basic rules, one can
formulate a two-player or multi-player game, but this paper is concerned with the one-player “Solitaire
Memory” game, which we shall simply call MEMORY in this paper. The goal of MEMORY is to remove all
cards as quickly as possible, i.e., using a minimum number of moves.

Versions of this game have attracted some attention from researchers in the recent past. Alfthan [Alf07]
studied strategies for two-player versions of the game. Foerster and Wattenhofer [FW13] studied the solitaire
game and derived the first nontrivial upper and lower bounds on the expected number, T (n), of moves
required by an optimal strategy. Subsequently, Velleman and Warrington [VW13] proved the very tight result
that T (n) = (3−2ln2)n+7/8−2ln2+o(1)≈ 1.61n. However, all of these works assume that the player(s)
have perfect memory. Arguably, what makes the children’s game Memory interesting is that player(s) will
find it hard to remember everything they have learned from previous moves. Thus, from a computational
complexity perspective, the most interesting question about MEMORY is: what is the minimum expected
number of moves required by a player whose memory capacity is at most S bits?

2.1 Our Results and Techniques

Define an (S,T )-strategy to be one where the player flips at most T = T (n) cards, while using at most
S = S(n) bits of memory throughout. Notice that we are measuring “time” in terms of cards flipped (rather
than moves made): this will simplify the presentation and is accurate enough for our purposes, since we
shall prove asymptotic results. We shall soon make this definition more formal. For now, we note that we
can readily obtain deterministic (S,T )-strategies with ST = Õ(n2), for essentially all S between Θ̃(1) and
Θ̃(n).1 We assume that the picture on each card can be represented using Õ(1) bits.

The main goal of this work is to study corresponding lower bounds, i.e., time-space tradeoffs. We prove
two such tradeoffs. The first applies to a simple model in which the player is deterministic and can do only
one thing with the pictures on the cards, namely, compare them for equality. Under this restriction, we show
that ST = Ω̃(n2) is necessary; see Theorem 2. We do this by analyzing an explicit adversarial strategy, using
concepts from matching theory. The aforementioned upper bound ST = Õ(n2) is achieved by a strategy that
does operate in this simple model, so this lower bound is tight.

Our second tradeoff (and main result) applies to a fully general model, where the player may use ran-
domization and may treat the picture on each card as an integer and perform arbitrary computations with
these integers. We prove that every (S,T )-strategy must satisfy ST 2 = Ω(n3); see Theorem 3 in Section 5.1.
We do this by modeling a strategy for MEMORY as a general branching program (BP): there are 2n input
variables corresponding to the 2n cards; each node in the BP reads a variable (flips a card); and each edge
in the BP has the potential to produce output (declare some pairs of cards as matched). To prove the appro-
priate time-space tradeoff for BPs that successfully play MEMORY, we extend a classic counting argument
due to Borodin and Cook [BC82] with a novel probabilistic argument of our own.

1The Õ(·) and Θ̃(.) notations ignore factors polylogarithmic in n; in this particular instance, the factor ignored is O(logn).
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2.2 Related Work

We have already discussed past work on the Memory game itself [Alf07, FW13, VW13]. As those works
do not deal with a space-bounded computational setting, at the technical level they are largely unconnected
to our work. The relevant related work is mostly in the area of time-space tradeoffs for branching programs.
For a detailed overview of this area and an excellent exposition of many key results, we refer the reader to
Chapter 10 of the textbook by Savage [Sav97]. Our work was motivated in part by a goal of furthering our
understanding of space-limited algorithms for computing matchings in graphs: MEMORY is a toy version of
this much richer problem. Thus, the recent and growing body of work on streaming algorithms and lower
bounds for computing matchings in graphs is also relevant: see, e.g., Assadi et al. [AKL17], Crouch and
Stubbs [CS14], and the references therein. We discuss this motivation further at the end of the paper, in
Section 6.

In a highly influential work, Borodin and Cook [BC82] studied the SORTING problem: given integers
x1,x2 . . . ,xn ∈ [n3], output the xi values in sorted order.2 They devised a counting-based method for deriving
time-space lower bounds for branching programs, using which they proved the tradeoff ST = Ω(n2/ logn)
for SORTING. Their method’s essential feature is that it divides time into “stages” and applies a counting
argument to each stage to argue that, if the branching program is “too small,” then none of the stages can
make enough progress on sufficiently many inputs. We shall see this overall scheme in the proof of our main
theorem. The Borodin-Cook method has been applied to many other problems, including matrix multiplica-
tion over a finite field [Yes84], generalized string matching [Abr87], Boolean matrix multiplication [Abr90],
calculating universal hash functions [MNT93], and UNIQUE-ELEMENTS [Bea91].

The Borodin-Cook method is described in detail in Savage’s book [Sav97]; in particular, Theorem
10.11.1 in that book gives a very general version of the method. In the terminology of that theorem, the
conditions under which this method applies are captured by a property of functions called (φ ,λ ,µ,ν ,τ)-
distinguishability. The function that describes the desired output of the game MEMORY is not (φ ,λ ,µ,ν ,τ)-
distinguishable for any positive constant ν , so this method does not apply as is to our problem.

It is worth comparing the quality of our branching program lower bound to known results on SORTING

and UNIQUE-ELEMENTS. When the “pictures” on the cards are just the integers in [R], MEMORY can be
thought of as a special case of SORTING where only a subset of [R]2n consisting of n equal pairs are valid
inputs. An algorithm for SORTING can be used to output all n pairs in order of increasing variable values,
effectively generating the output for MEMORY. In UNIQUE-ELEMENTS, the input consists of n integers
x1,x2, . . . ,xn ∈ [n] and the desired output is a list of all i such that the value xi appears exactly once in the
input. Consider the following closely related problem that we call UNIQUE-PAIRS: given an input of 2n
integers in [n], output all pairs (i, j) with i < j such that xi = x j and no other k ∈ [2n] satisfies xi = x j = xk.
Then, with minor modifications, the analysis that Beame gives for UNIQUE-ELEMENTS [Bea91] still applies,
so this variant has ST = Ω(n2). (See Appendix A for some details of how to modify Beame’s proof.) So
playing MEMORY is an easier task than both SORTING and UNIQUE-ELEMENTS, and thus it is harder to
prove a lower bound. Indeed, so far we are only able to show ST 2 = Ω(n3) for our problem, instead of the
stronger ST = Ω(n2) bound known for these related problems.

Our other lower bound for MEMORY, which does give an optimal tradeoff of ST = Ω(n2 logn), applies
in a weaker model where cards may only be compared for equality. Its proof is based on a direct adversarial
argument in the style of classic lower bounds for deterministic query complexity; see, e.g., Chapter 5 of the
textbook by Du and Ko [DK00].

2The notation [N] denotes the set {1,2, . . . ,N}.
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3 Preliminaries

Without loss of generality, we may assume that the 2n cards in a game of MEMORY are laid down on the
table linearly. We model our input as a (2n)-tuple of variables x = (x1, . . . ,x2n), where xi is the “picture” on
the ith card. We think of each picture as an integer in [R] := {1, . . . ,R}. We model the act of flipping the
cards as reading the values of these variables. Per the rules of MEMORY, the only valid tuples x are those
where exactly n distinct values occur exactly twice each. We let X denote the set of valid inputs. Given
x ∈X , a match in x is a triple (i, j,v) where 1 6 i < j 6 2n, 1 6 v 6 R, and xi = x j = v. Clearly, every valid
x has exactly n matches. The goal of MEMORY is to output all n matches—this is how we model the act of
removing all cards—under the promise that the input is valid.

It is reasonable to assume that R = nO(1): indeed, if R were larger, we could simply hash each picture
down to a d3logne-bit string using a 2-universal hash function. The idea of universal hashing is to select
the hash function at random from a specific class of functions at the beginning of the execution. Therefore,
no single input will always lead to worst case behavior. Formally, a family of hash functions H that map a
finite universe U of keys into [m] is 2-universal if for each pair of distinct keys k, l ∈U , the fraction of hash
functions h ∈H for which h(k) = h(l) is at most 1/m. Picking U = [R], m = O(n) would lead to a collision
with probability at most O(1/n). See Section 11.3.3 in the textbook by Cormen et al. [CLRS09] for more
on universal hashing.

We are requiring the output to specify not just the matching pairs of cards (i, j) but also the integer
values shown on those cards. This, too, is reasonable because it costs at most n additional variable reads to
satisfy this requirement, and at least n variables must be read by any correct strategy.

For the rest of this thesis, we shall study computational complexity in worst-case settings for inputs.
More precisely, an (S,T )-strategy is required to use at most S bits of memory. In the deterministic case, the
strategy must always terminate with a correct output after reading at most T variables. In the randomized
case, it must always terminate with a correct output and the expected number of variables it reads must be at
most T . This is a Las Vegas notion of randomization. In contrast, a Monte Carlo algorithm may sometimes
produce an incorrect solution (we usually try to bound the probability of correctness). See Chapter 1.2 in
Motwani and Raghaven’s textbook [MR95] for more on different notions of randomization.

We proceed to formally define two computational models for playing MEMORY using limited memory
(space). We then present a basic, and easy to prove, upper bound that applies to the weaker of these models.
We shall eventually prove a tight lower bound in this weaker model and a non-tight lower bound in the
stronger model.

3.1 Computational Models

Branching Programs. Our strongest model is that of general branching programs on the variables
x1, . . . ,x2n. Recall that each variable takes values in [R]. An R-way branching program (BP) is a directed
acyclic graph where each node is labeled with one of the variables xi; there are exactly R out-edges from
each non-sink node, labeled with the R different possible values for xi; an edge is additionally annotated
with zero or more outputs; and there is a single source node. Given an input x, the execution of the BP on
x starts at the source node. At each time step, the algorithm reads the variable xi labeling the current node
and, based on its value, it branches to one of the R successors of the node. In the process, it produces all the
outputs that annotate the edge traversed. If the algorithm moves to a sink node, then it halts. See figure 6 for
an example.

We can model an (S,T )-strategy for MEMORY as an R-way layered branching program B. This is simply
a branching program whose nodes are arranged in layers, numbered from 0 to T , with each edge going from
one layer to the next. The source node is in layer 0 and every node in layer T is a sink. Further, since the
strategy is limited to S bits of working memory (space), each layer has at most 2S nodes. It is conventional
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Figure 6: Example of an R-way branching program

to say that B has length T and width at most 2S.
On every input x = (x1, . . . ,x2n) ∈ [R]2n, running B on x will trace a source-to-sink path through its

nodes, outputting some triples in the process. Correctness requires that for every valid input x ∈X , exactly
n outputs are produced, namely, the n matches in x.

The Blind Player Model. Since the two main actions in MEMORY are remembering some cards and
comparing two cards for equality, the game can also be studied in a weaker model where such equality
comparisons are the only thing one is allowed to do with the pictures on the cards. The BP model above
allows a strategy to perform arbitrary computations (e.g., arithmetic) with the integers written on the cards.
In contrast, in a blind player model, a strategy cannot see the pictures on the cards directly, but can only know
whether or not two such pictures are equal. A strategy can, however, manipulate other relevant integers, such
as the index positions at which particular cards appear.

More formally, an blind player (S,T )-strategy maintains a working set S ⊆ [2n]: its elements are the
indices of all cards “remembered” by the strategy. The set S is initially empty, and such that |S | logn 6 S
at all times, so that S fits in S bits of memory. In each time step, the strategy examines a card. Suppose it
examines the ith card: then an oracle instantaneously informs it whether xi = x j, for each j ∈S . Based on
this information, the strategy outputs zero or more values and updates S to a subset of S ∪{i}.

3.2 A Basic Upper Bound

We proceed to analyze a natural strategy, implementable in the blind player model, that sets the benchmark
upper bound ST = O(n2 logn).

Proposition 1. In the blind player model described above, for all S with logn 6 S 6 n logn, MEMORY has
an (S,T )-strategy where ST = O(n2 logn).

Proof. Let s := bS/ lognc be the number of cards that will fit in memory. The algorithm proceeds in passes
and each pass begins by clearing the working set to ∅. In pass i, the player reads x(i−1)s+1, . . . ,xis and stores
them all in memory, outputting any matches found. The player then reads xis+1, . . . ,x2n in order, forgetting
each card after it is read, and outputting any matches found between these cards and the ones stored in
memory. Clearly, every match in the input is eventually found and each pass takes O(n) time.

This algorithm makes at most d2n/se passes, for a total time complexity of T = O((2n/s) ·n). This gives
ST = O(n2 logn), as desired.

Note that our model does not account for the space used by a strategy to keep track of its progress, e.g.,
through loop indices. This is just to keep things simple: had we accounted for this, the space usage of the
above strategy would increase by only an additive O(logn).
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4 Warm-up: A Lower Bound for a Blind Player

We shall now prove that the simple upper bound in Proposition 1 is tight in the blind player model. In fact,
we can prove something stronger. Consider an (S,T )-strategy for MEMORY and let s := bS/ lognc as above.
Since each examination of a card reveals the answer to at most s queries of the form “xi = x j?”, it suffices
to prove that Ω(n2) queries must be made by any query strategy that can access information about x only
through such pairwise queries. It then follows that T = Ω(n2/s), giving ST = Ω(n2 logn).

To analyze such a query strategy, consider the knowledge graph G of the algorithm, defined as follows:
G is an undirected graph with vertices 1,2, . . . ,2n (the indices of the cards); edge {i, j} occurs in G iff xi = x j

is consistent with the validity of the input x and all answers to queries received by the algorithm. At the
beginning of the game, G is a complete graph (figure 7). At all times, every edge of G is useful, where a
useless edge is defined to be one that does not belong to any perfect matching (figure 8). Further, as the
algorithm proceeds, G can only lose edges. The algorithm can conclude that xi = x j iff {i, j} is an isolated
edge in G (figure 9). It is done when and only when G becomes a perfect matching (figure 10).

We shall also allow the algorithm the following information for free: we can only have xi = x j if exactly
one of i and j is in [n]. This means that, at the start of the algorithm, the knowledge graph G is a complete
bipartite graph with “left side” L = [n] and “right side” R = [2n]\ [n] (figure 11).

Theorem 2. Every query strategy for MEMORY using pairwise equality queries must make Ω(n2) queries
in total. Therefore, an (S,T )-strategy in the blind player model requires ST = Ω(n2 logn).

Proof. We shall prove our lower bound by an adversarial argument, using the following adversary. Every
time the query algorithm asks whether xi = x j, the adversary answers “No” unless consistency requires a
“Yes” answer. This means that the knowledge graph G evolves as follows, with each query made.

• The algorithm asks “Is xi = x j?” for some non-isolated edge {i, j} in G. The adversary answers “No”,
causing this edge to be deleted from G.

• The algorithm considers each remaining edge in G and checks whether it is still useful. The edges
which are not useful are said to vanish from G.

When the algorithm finishes, G must reduce to a perfect matching: call it M. Further, exactly n(n−1) edges
must have been either deleted or vanished from G. Each query results in exactly one deletion, so it suffices
to prove that Ω(n2) edges get deleted by the time G becomes M. The trouble is that a deletion could be
accompanied by up to Ω(n2) vanishings: for instance, consider the deletion of the edge {n,n+1} from the
bipartite graph whose edge set is {{n,n+1}}∪{{i,n+ j} : 1 6 i 6 j 6 n} (figure 12).

The key is to observe that the edges outside M can be partitioned into pairs so that, within each pair, the
first of the edges to be removed from G must be deleted, rather than vanished (figure 13). To formalize this,
we first renumber the vertices so that final matching M is {{i,n+ i} : 1 6 i 6 n}. Now, for each e /∈M in
the initial complete bipartite graph, define φ(e) as follows:

If e = {i,n+ j}, then φ(e) := { j,n+ i} .

On the edges outside M, this mapping φ is an involution with no fixed points, so it partitions those edges
into pairs, as required.

Claim. For all e /∈M, either e or φ(e) was deleted from G, and not vanished.
Proof of Claim. Suppose not. Then, either e and φ(e) were vanished as a result of the same query, or they
were vanished as a result of two different queries. In the former case, consider the state of G immediately
after the deletion of the edge involved in this query. At this point G contained both e and φ(e), and so both
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Figure 7: Starting configuration of the knowledge
graph when n = 3

Figure 8: Edge (2,3) is useless, so it vanishes

Figure 9: (2,4), (2,5),(2,6) vanish; (1,2) is matched Figure 10: G becomes a perfect matching

Figure 11: Starting configuration is a bipartite graph
Figure 12: Deleting (3,4) can cause (2,6),(1,6),(1,5) to
vanish
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Figure 13: Suppose (1,4), (2,5), (3,6) are the final matching. Then either (1,5) or (2,4) has to be deleted.

these edges belonged to the perfect matching (M \{{i,n+ i},{ j,n+ j}})∪{e,φ(e)}. Therefore both these
edges were useful and should not have vanished, a contradiction.

In the latter case, suppose (without loss of generality) that e was the first of the two edges to vanish.
Consider the state of G immediately after the deletion of the edge involved in the query that caused e to
vanish. Arguing as above, e is useful at this point and so it should not have vanished, a contradiction. This
proves the claim.

Therefore, the total number of edges deleted from G is at least n(n−1)/2 = Ω(n2), as required.

5 The Main Lower Bound

5.1 The Overall Setup

Let B be a layered branching program of length T and width at most 2S that correctly plays the Memory
Game. Let r and t be positive-integer-valued parameters to be chosen later. We divide B into stages, where
each stage, except perhaps the last, consists of r+1 consecutive layers of nodes of B, and the final layer of
nodes of stage i equals the first layer of nodes of stage i+1 (figure 14). Call a stage productive for an input

Figure 14: Divide a branching program into stages of depth r
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x ∈X if running B on x produces at least 2t outputs in that stage. Recall, from Section 3, that X denotes
the set of valid inputs.

Assume, towards a contradiction, that the number of stages is at most n/(2t). Then, for every input x,
there exists a stage productive for x. Therefore, there exists a stage i productive for a set X ′ of inputs, where
|X ′|/|X | > 2t/n. Consider the first layer of nodes in this stage. There are at most 2S such nodes, so one
of these nodes—v, say—is reached by at least a 2−S fraction of the inputs in X ′.

Consider the subprogram of B with source node v, consisting of only the nodes in stage i. Unfold this
subprogram into a decision tree with output (by replicating nodes as needed) and, if necessary, increase its
depth to r by querying some dummy variables (figure 15). Let T be the resulting tree. Then T produces at
least 2t correct outputs for a (2t/n)2−S fraction of inputs in X .

Set r = b(2/e)
√

ntc. The main technical argument in our proof shows that a tree with this depth is “too
shallow” and is therefore quite unproductive. Specifically, by Lemma 5, which we prove below, the fraction
of inputs in X for which T correctly produces at least 2t outputs is at most e−t +(n/2)−t . Therefore,

2t
n
·2−S 6 e−t +

(n
2

)−t
.

Setting t = S gives us a contraction.
Therefore, for the above choices of r and t, the branching program B must have more than n/(2t) stages.

Since each non-last stage has length r, it follows that

T >
nr
2t

=
nb(2/e)

√
nSc

2S
=

Ω(n3/2)√
S

,

which proves the tradeoff T
√

S = Ω(n3/2). This outlines proves our main result.

Theorem 3 (Main Theorem). Any deterministic branching program of length T and width at most 2S that
correctly plays the Memory Game must obey the tradeoff ST 2 = Ω(n3).

In the rest of Section 5, we fill in the necessary details to formally prove Theorem 3. In the sequel, we
indicate how to generalize the lower bound to randomized strategies.

5.2 A Probability-Theoretic Lemma

Our eventual proof of the unproductivity of shallow decision trees crucially hinges on a probability-theoretic
lemma that we now develop.

Suppose we have a bag of 2n balls, two of each color. We pick r balls without replacement from the bag.
Let Y be the number of pairs we picked (each pair has the same color). We want to bound the probability
that Y > t. Formally, suppose r elements are chosen, without replacement, from the set [n]×{0,1}, forming
a random subset A. Define the random variable

Y = |{ j ∈ [n] : ( j,0) ∈ A and ( j,1) ∈ A}| .

Note that Y = ∑
n
j=1 I j, where I j = 1( j,0)∈A∧( j,1)∈A. These indicator random variables I1, . . . , In are clearly not

independent. Nevertheless, we can prove the following strong tail estimate on Y .

Lemma 4. For all t > 1,

Pr[Y > t]6 exp
(
−t ln

4nt
er2

)
.

In particular, for r 6 (2/e)
√

nt, we have Pr[Y > t]6 e−t .

12



Figure 15: Unfold a subprogram into a decision tree. Subtrees rooted at x1,x7 in layer 2 are replicated. x1 in
layer 2 is turned into a dummy variable x6 so that no path makes redundant queries.

Proof. For 1 6 j 6 n, put U j = 1( j,0)∈A and Vj = 1( j,1)∈A, so that I j = U jVj. We shall use some termi-
nology and results from Joag-Dev and Proschan [JP83]. The tuple (U1,V1, . . . ,Un,Vn) has a permutation
distribution [JP83, Definition 2.10]. Therefore, these random variables are negatively associated [JP83,
Theorem 2.11]. Since the variables I j are increasing functions of disjoint subsets of these variables, they
too are negatively associated [JP83, Property P6]. Invoking a result from Dubhashi and Panconesi [DP09,
Theorem 3.1], we can “apply Chernoff-Hoeffding bounds as is” to the sum Y = ∑

n
j=1 I j.

To be precise, note that

EY =
n

∑
j=1

E I j = n · r
2n
· r−1

2n−1
6

r2

4n
.

So consider the binomially distributed random variable Z ∼ Bin(n, p), where p = r2/(4n2). Then, for all
t > 0, we have Pr[Y > t] 6 Pr[Z > t]. We shall use the following very precise Chernoff bound; see, e.g.,
Theorem 1 of Arratia and Gordon [AG89]. For all reals a, p, with 0 < p < a < 1,

Pr[Z > an]6 e−nD(a‖p) , (3)

where D(a‖p) = a ln
a
p
+(1−a) ln

1−a
1− p

(4)

is the relative entropy of the Bernoulli distribution Bern(a) to Bern(p). We simplify (4) as follows.

D(a‖p)> a ln(a/p)+(1−a) ln(1−a)> a ln(a/p)−a = a ln(a/(ep)) .

Using this in (3), with the setting a = t/n, gives us the claimed bound on Pr[Y > t].

13



5.3 The Unproductivity of Shallow Decision Trees

We now come to the main technical thread of the proof. As shown in Section 5.1, proving this lemma will
complete the proof of the tradeoff lower bound ST 2 = Ω(n3).

Lemma 5 (Main technical lemma). Consider a subprogram of B of depth r 6 bn/2c. Then for every
t 6 br/2c, the probability that a uniformly-random input would produce at least 2t outputs following this
subprogram is at most (n− r− t)−t + e−t .

Proof. Unfold this subprogram into a decision tree with output (by replicating nodes as needed). If neces-
sary, remove any redundant nodes in the tree, where an already-queried variable is re-queried, and increase
the depth of every leaf to r by querying some dummy variables. Let T be the resulting tree. Then, in T ,
along every path from the root to a leaf, exactly r inputs are queried; no input is queried and no output is
generated more than once along any path.

Let Π be the set of all root-to-leaf paths in T . Let x be a uniformly random input. Let π(x) denote the
path that x follows in T .

For each path π ∈ Π, let s(π) denote the number of outputs along π . Suppose those s(π) outputs
are (y1

k ,y
2
k ,vk), for 1 6 k 6 s(π). Recall that each such output is a declaration that xy1

k
= xy2

k
= vk. Let

q1(π),q2(π), . . . ,qr(π) be the indices of the positions queried along π , in the order that they are queried:
thus qi(π)∈ [2n] for each i∈ [r]. Suppose the results of the queries are xqi(π) = wi(π) for each i∈ [r]. Define
an ordered list W (π) = [w1(π),w2(π), . . . ,wr(π)]. Then there is a bijection between such an ordered list and
a path; i.e. no two distinct paths π1,π2 have W (π1) =W (π2) and any ordered list of r numbers picked from
{1,1,2,2,3,3, . . . ,R,R} corresponds to a path.

Let p(π) = Pr [π(x) = π] denote the probability that a uniformly random input follows path π . Then

p(π) =
|{x ∈X : xqi(π) = wi(π),∀i : 1 6 i 6 r}|

|X |
=
|{x ∈X : xi = wi(π),∀i : 1 6 i 6 r}|

|X |
,

since all indices are symmetric.
For a uniformly-random input x, let random variable X be the total number of equal pairs in W (π(x)).
Let Y be defined as in Lemma 4, above. Clearly, Y is the number of equal pairs found upon querying

x1,x2, . . . ,xr for a uniformly random input. We now argue that X ≡ Y in distribution, i.e., that Pr[X = u] =
Pr[Y = u], for all u with 0 6 u 6 br/2c. Let Πu ⊆ Π denote the set of all paths in T with exactly u equal
pairs in their r queries. Then

Pr [X = u] = Pr [π(x) ∈Πu] = ∑
π∈Πu

p(π) =
∑π∈Πu |{x ∈X : xi = wi(π),∀i : 1 6 i 6 r}|

|X |
= Pr [Y = u] .

Since X ≡ Y , it follows from Lemma 4 that

Pr [X > t] = Pr [Y > t]6 e−t .

Call a path π in T good if and only if it produces at least 2t outputs and at least t of those outputs are
of two variables which have both been queried along π . Call an input x good if and only if π(x) is good. So
the probability that a uniformly-random input is good satisfies

Pr [π(x) is good]6 Pr [X > t]6 e−t .

When an input passes through a bad path π , either π does not generate enough outputs, or it generates
at least t +1 outputs of two variables that the path does not both query. Pick t +1 such outputs arbitrarily.
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Among those t+1 output pairs, suppose k pairs have exactly one variable queried along π , and p = t+1−k
pairs have neither variables queried along π .

We first consider the k outputs with exactly one variable queried. Denote those k queried variables as
xb1 ,xb2 , . . . ,xbk . In total, there are at least n− r variables that π does not query. For a uniformly random
input consistent with queries along π , all of those unqueried variables are equally likely to match with xb1 .
Therefore, the probability that the variable matched with xb1 is correct is at most 1/(n−r). For 16 i6 k−1,
suppose the variables matched with xb1 , . . . ,xbi are correct, we have at least n− r− i equally likely choices
to match with xbi+1 . Therefore, the probability that xb1 ,xb2 , . . . ,xbk are all matched correctly is at most(

1
n− r

)(
1

n− r−1

)
· · ·
(

1
n− r− k+1

)
6 (n− r− k+1)−k .

Next we consider the p outputs with neither variable queried. Denote the values of those p pairs as
vc1 ,vc2 , . . . ,vcp . In total, there are at least R− r possible values of variables that π does not discover in its
queries. For a uniformly random input consistent with queries along π , all of those values of variables are
equally likely to be the value of any of the p pairs. Therefore, the probability that vc1 ,vc2 , . . . ,vcp are all
correct values is at most(

1
R− r

)(
1

R− r−1

)
· · ·
(

1
R− r− p+1

)
6 (n− r− p+1)−p .

Therefore, if we uniformly randomly draw one input x from the set of all bad inputs, the probability that
x generates at least 2t correct outputs along π(x) satisfies

Pr [x produces at least 2t correct outputs | x is bad]6 Pr [Guesses of k+ p matches are all correct]

6 (n− r− k+1)−k(n− r− p+1)−p

6 (n− r− t)−t−1

< (n− r− t)−t .

Therefore, the total probability of a uniformly random input x (either good or bad) producing at least 2t
correct outputs satisfies

Pr [x produces at least 2t correct outputs]< (n− r− t)−t Pr [x is bad]+Pr [x is good]

< (n− r− t)−t + e−t ,

which completes the proof.

5.4 Lower Bound for Randomized Algorithms

The lower bound proved so far applies only to deterministic strategies for the Memory game. However, the
ideas readily extend to give a similar lower bound for randomized strategies. We sketch this generalization.

Given space constraint S, suppose a Las Vegas algorithm A for the Memory game takes expected time
T = T (n,S). Remember that a Las Vegas algorithm always produces the correct output, but the run time
varies from run to run. Convert A to a Monte Carlo algorithm A ′ that exactly mimics A expect that it
always stops after 10T steps, at which point it outputs “Error”. By Markov’s inequality, for any input,

Pr [A ′ is incorrect] = Pr [A has run time greater than 10T ]6
T

10T
=

1
10

.

Therefore, A ′ is correct for any input with probability 9/10.
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Figure 16: Table demonstrating Yao’s minimax principle

A randomized algorithm is simply a distribution over deterministic algorithms. Suppose A ′ is a distribu-
tion over deterministic algorithms A1,A2, . . . ,Ad . For all j ∈ [d], A j runs in time 10T . Suppose x1,x2, . . . ,xi

are all the possible inputs in X . We can make a table where row j and column k shows whether A j is correct
on input xk (figure 16).

Yao’s minimax principle [Yao77] says that if A ′ is correct 9/10 of the time in any column, then there
exists a row that is correct on 9/10 of the columns. In other words, there is a deterministic algorithm A j

running in time 10T that generates n correct outputs for a set X ′′ of inputs, where |X ′′|/|X | > 9/10.
Model A j as a branching program B with length 10T and width at most 2S.

Similar to the proof for the deterministic lower bound, we divide B into stages of length r = b(2/e)
√

nSc.
Assume that the number of stages is at most n/(2S). Then there exists a subtree at some stage that produces
at least 2S correct outputs for a (2S/n)2−S fraction of inputs in X ′′. We arrive at the contradiction that

9
10
· 2S

n
·2−S 6 e−S +

(n
2

)−S
.

So B has more than n/(2S) stages. Since each non-last stage has length r, it follows that

10T >
nr
2S

=
nb(2/e)

√
nSc

2S
=

Ω(n3/2)√
S

,

which proves the tradeoff T
√

S = Ω(n3/2).

6 Concluding Remarks

In this work, we studied the complexity of the Memory Game (also known as “Concentration”) in a limited-
memory setting, proving a nontrivial time-space lower bound. We showed that, when the player has S bits
of memory, the number of card flips required to guarantee completion of the game is Ω(n3/2/

√
S), for both

deterministic and randomized algorithms.
Our results suggest a number of directions for future work.
First, we conjecture that every randomized query strategy for MEMORY using pairwise equality queries

must make Ω̃(n2) queries in total, i.e., that our Theorem 2 extends to the randomized case.
Second, it is worth investigating whether there is any (randomized) algorithm that can achieve ST 2 =

O(n3). Beame et al. [BCM13] gives the same upper bound for ELEMENT-DISTINCTNESS as our lower bound
for MEMORY under a strong notion of randomization. The core technique of their algorithm is Floyd’s cycle-
finding algorithm (also known as “the tortoise and the hare algorithm”), which finds a colliding pair with
small space in O(

√
n) time. It is questionable whether this technique is strong enough to obtain the same

upper bound for MEMORY, as MEMORY requires finding not just 1 but all n pairs.
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Third, we could hope to obtain a stronger bound in a comparison branching program model. In this
more restricted model, each node in the branching program compares two variables xi,x j and branches
three ways, corresponding to the three cases xi < x j, xi = x j, and xi > x j, respectively. We conjecture
that a stronger bound ST = Ω(n2−ε) is achievable in this model. Specifically, Borodin et al. [BFadH+87]
obtains a time-space tradeoff similar to ours for ELEMENT-DISTINCTNESS (the problem of outputting 1 if n
input variables x1, . . . ,xn are all distinct and 0 otherwise) in the comparison branching program model. Yao
[Yao94] improves their bound to ST = Ω(n2−ε) through enforcing the space bound more frequently. We
conjecture that an analogous improvement can also be applied to MEMORY, where the notion of progress
may be the number of comparisons made between either identical pairs or cards with adjacent values when
the n distinct integers on the 2n cards are sorted into increasing order.

Fourth, it is worth investigating what sort of tradeoffs can be obtained in a linear branching program
model, where each node v performs linear queries ∑

n
i=1 λ v

i xi : cv and branches three ways, corresponding to
the three cases ∑

n
i=1 λ v

i xi < cv, ∑
n
i=1 λ v

i xi = cv, and ∑
n
i=1 λ v

i xi > cv, respectively. Yao [Yao82] proves that
any branching program using linear queries to sort n inputs x1,x2, . . . ,xn must satisfy ST = Ω(n2). This is
done via a reduction to branching program using queries “min(R) =?” where R is any subset of {x1, . . . ,xn}.
Similarly, Karchmer [Kar86] proves a ST 2 = Ω(n3) lower bound for ELEMENT-DISTINCTNESS in the linear
branching program model. It may be possible to reduce from linear-query to min-query branching programs
for MEMORY in a similar way. The analysis would also rely on a notion of progress which is perhaps the
number of high-ranking comparisons made between either identical pairs or cards with adjacent values.

This work was motivated in part by the general question of what time-space tradeoffs one can obtain for
the problem (in fact, family of problems) that calls for finding a large matching in an input graph. There are a
number of interesting space-bounded algorithms for approximate maximum matching in the data streaming
model; see, e.g., Crouch and Stubbs [CS14] and the references therein. There are also some corresponding
lower bounds for this problem in a one-pass streaming model; see, e.g., Goel et al. [GKK12] and Assadi et
al. [AKL17]. The streaming model is a very restrictive model for space-bounded algorithms: it requires the
input to be accessed in a sequential fashion. One-pass streaming is even more restrictive. Yet, the precise
tradeoff between space and approximation quality for maximum matching remains open even in the one-
pass case, and there are essentially no nontrivial lower bounds in the multi-pass case. We hope that the
lessons learned in studying the Memory game will find applications in establishing time-space trade-offs for
finding large matchings in graphs. One can think of the Memory game as a graph on 2n vertices where only
equal pairs are connected by an edge. What we have shown here are tradeoffs for discovering this perfect
matching that is promised to exist.
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A A Lower Bound for the Unique Pairs Problem

In section 2.2, we compared the hardness of MEMORY to UNIQUE-ELEMENTS. Here we show that a time-
space tradeoff of T S = Ω(n2) can be obtained for a variant of MEMORY that is a harder task (and thus easier
to prove a lower bound).

Consider the following problem of UNIQUE-PAIRS: Given an input of 2n integers in [n], output all pairs
(i, j) with i < j such that xi = x j and no other k ∈ [2n] satisfies xi = x j = xk. Modeling the proof for UNIQUE-
ELEMENTS in [Bea08], we now prove that any algorithm computing UNIQUE-PAIRS that runs in time at most
T and uses space at most S has T S = Ω(n2).
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Proof. For a uniformly random input over [n]2n, the expected output size for UNIQUE-PAIRS is

E [# outputs] =
(

n
2

)
1
n

(
1− 1

n

)2n−2

>
n−1
2e2

By Markov’s inequality, the probability that the output size is at least (n−1)/(4e2) is

Pr
[

# outputs >
n−1
4e2

]
> c

for some constant 0 < c < 1.
Let B be the layered branching program computing UNIQUE-PAIRS. We have T > 2n. For some h to be

chosen later, we partition B into T/h stages of depth h. We call an input good if UNIQUE-PAIRS generates
at least (n−1)/(4e2) outputs for that input. So B run on a good input should produce at least

m =
n−1

4e2(T/h)
=

(n−1)h
4e2T

outputs in some stage. Same as the argument in [Bea08], for m 6 n/4 and h 6 n/4, for any B of depth at
most h,

Pr[B produces at least m correct outputs]6 e−c′m

for some constant c′ > 0. Choosing h = n/4, we have m 6 n/4. Since the fraction of good inputs is at least
c, we need

2Se−c′m > c

which gives us S = Ω(m) = Ω(n2/T ).
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